Human–computer interaction (HCI) is the study of interaction between people (users) and computers. It is often regarded as the intersection of computer science, behavioral sciences, design and several other fields of study. Interaction between users and computers occurs at the user interface (or simply interface), which includes both software and hardware; for example, characters or objects displayed by software on a personal computer's monitor, input received from users via hardware peripherals such as keyboards and mice, and other user interactions with large-scale computerized systems such as aircraft and power plants. The Association for Computing Machinery defines human-computer interaction as "a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them."[1] An important facet of HCI is the securing of user satisfaction (see Computer user satisfaction).
Because human-computer interaction studies a human and a machine in conjunction, it draws from supporting knowledge on both the machine and the human side. On the machine side, techniques in computer graphics, operating systems, programming languages, and development environments are relevant. On the human side, communication theory, graphic and industrial design disciplines, linguistics, social sciences, cognitive psychology, and human factors are relevant. Engineering and design methods are also relevant. Due to the multidisciplinary nature of HCI, people with different backgrounds contribute to its success. HCI is also sometimes referred to as man–machine interaction (MMI) or computer–human interaction (CHI).
Attention to human-machine interaction is important, because poorly designed human-machine interfaces can lead to many unexpected problems. A classic example of this is the Three Mile Island accident where investigations concluded that the design of the human-machine interface was at least partially responsible for the disaster.[2] Similarly, accidents in aviation have resulted from manufacturers' decisions to use non-standard flight instrument and/or throttle quadrant layouts: even though the new designs were proposed to be superior in regards to basic human-machine interaction, pilots had already ingrained the "standard" layout and thus the conceptually good idea actually had undesirable results.
Contents |
A basic goal of HCI is to improve the interactions between users and computers by making computers more usable and receptive to the user's needs. Specifically, HCI is concerned with:
A long term goal of HCI is to design systems that minimize the barrier between the human's cognitive model of what they want to accomplish and the computer's understanding of the user's task.
Professional practitioners in HCI are usually designers concerned with the practical application of design methodologies to real-world problems. Their work often revolves around designing graphical user interfaces and web interfaces.
Researchers in HCI are interested in developing new design methodologies, experimenting with new hardware devices, prototyping new software systems, exploring new paradigms for interaction, and developing models and theories of interaction.
HCI differs from human factors in that with HCI the focus is more on users working specifically with computers, rather than other kinds of machines or designed artifacts. There is also a focus in HCI on how to implement the computer software and hardware mechanisms to support human-computer interaction. Thus, human factors is a broader term; HCI could be described as the human factors of computers - although some experts try to differentiate these areas.
According to some experts, HCI also differs from ergonomics in that there is less of a focus on repetitive work-oriented tasks and procedures, and much less emphasis on physical stress and the physical form or industrial design of the user interface, such as keyboards and mice. However, this does not take a full account of ergonomics, the oldest areas of which were mentioned above, but which more recently has gained a much broader focus (equivalent to human factors). Cognitive ergonomics, for example, is a part of ergonomics, of which software ergonomics (an older term, essentially the same as HCI) is a part.[3]
Three areas of study have substantial overlap with HCI even as the focus of inquiry shifts. In the study of personal information management (PIM), human interactions with the computer are placed in a larger informational context - people may work with many forms of information, some computer-based, many not (e.g., whiteboards, notebooks, sticky notes, refrigerator magnets) in order to understand and effect desired changes in their world. In computer supported cooperative work (CSCW), emphasis is placed on the use of computing systems in support of the collaborative work of a group of people. The principles of human interaction management (HIM) extend the scope of CSCW to an organizational level and can be implemented without use of computer systems.
When evaluating a current user interface, or designing a new user interface, it is important to keep in mind the following experimental design principles:
Repeat the iterative design process until a sensible, user-friendly interface is created.[4]
A number of diverse methodologies outlining techniques for human–computer interaction design have emerged since the rise of the field in the 1980s. Most design methodologies stem from a model for how users, designers, and technical systems interact. Early methodologies, for example, treated users' cognitive processes as predictable and quantifiable and encouraged design practitioners to look to cognitive science results in areas such as memory and attention when designing user interfaces. Modern models tend to focus on a constant feedback and conversation between users, designers, and engineers and push for technical systems to be wrapped around the types of experiences users want to have, rather than wrapping user experience around a completed system.
Displays are human-made artifacts designed to support the perception of relevant system variables and to facilitate further processing of that information. Before a display is designed, the task that the display is intended to support must be defined (e.g. navigating, controlling, decision making, learning, entertaining, etc.). A user or operator must be able to process whatever information that a system generates and displays; therefore, the information must be displayed according to principles in a manner that will support perception, situation awareness, and understanding.
THIRTEEN PRINCIPLES OF DISPLAY DESIGN[6]
These principles of human perception and information processing can be utilized to create an effective display design. A reduction in errors, a reduction in required training time, an increase in efficiency, and an increase in user satisfaction are a few of the many potential benefits that can be achieved through utilization of these principles.
Certain principles may not be applicable to different displays or situations. Some principles may seem to be conflicting, and there is no simple solution to say that one principle is more important than another. The principles may be tailored to a specific design or situation. Striking a functional balance among the principles is critical for an effective design. [7]
Perceptual Principles
1. Make displays legible (or audible)
A display’s legibility is critical and necessary for designing a usable display. If the characters or objects being displayed cannot be discernible, then the operator cannot effectively make use of them.
2. Avoid absolute judgment limits
Do not ask the user to determine the level of a variable on the basis of a single sensory variable (e.g. color, size, loudness). These sensory variables can contain many possible levels.
3. Top-down processing
Signals are likely perceived and interpreted in accordance with what is expected based on a user’s past experience. If a signal is presented contrary to the user’s expectation, more physical evidence of that signal may need to be presented to assure that it is understood correctly.
4. Redundancy gain
If a signal is presented more than once, it is more likely that it will be understood correctly. This can be done by presenting the signal in alternative physical forms (e.g. color and shape, voice and print, etc.), as redundancy does not imply repetition. A traffic light is a good example of redundancy, as color and position are redundant.
5. Similarity causes confusion: Use discriminable elements
Signals that appear to be similar will likely be confused. The ratio of similar features to different features causes signals to be similar. For example, A423B9 is more similar to A423B8 than 92 is to 93. Unnecessary similar features should be removed and dissimilar features should be highlighted.
Mental Model Principles
6. Principle of pictorial realism
A display should look like the variable that it represents (e.g. high temperature on a thermometer shown as a higher vertical level). If there are multiple elements, they can be configured in a manner that looks like it would in the represented environment.
7. Principle of the moving part
Moving elements should move in a pattern and direction compatible with the user’s mental model of how it actually moves in the system. For example, the moving element on an altimeter should move upward with increasing altitude.
Principles Based on Attention
8. Minimizing information access cost
When the user’s attention is diverted from one location to another to access necessary information, there is an associated cost in time or effort. A display design should minimize this cost by allowing for frequently accessed sources to be located at the nearest possible position. However, adequate legibility should not be sacrificed to reduce this cost.
9. Proximity compatibility principle
Divided attention between two information sources may be necessary for the completion of one task. These sources must be mentally integrated and are defined to have close mental proximity. Information access costs should be low, which can be achieved in many ways (e.g. close proximity, linkage by common colors, patterns, shapes, etc.). However, close display proximity can be harmful by causing too much clutter.
10. Principle of multiple resources
A user can more easily process information across different resources. For example, visual and auditory information can be presented simultaneously rather than presenting all visual or all auditory information.
Memory Principles
11. Replace memory with visual information: knowledge in the world
A user should not need to retain important information solely in working memory or to retrieve it from long-term memory. A menu, checklist, or another display can aid the user by easing the use of their memory. However, the use of memory may sometimes benefit the user by eliminating the need to reference some type of knowledge in the world (e.g. an expert computer operator would rather use direct commands from memory than refer to a manual). The use of knowledge in a user’s head and knowledge in the world must be balanced for an effective design.
12. Principle of predictive aiding
Proactive actions are usually more effective than reactive actions. A display should attempt to eliminate resource-demanding cognitive tasks and replace them with simpler perceptual tasks to reduce the use of the user’s mental resources. This will allow the user to not only focus on current conditions, but also think about possible future conditions. An example of a predictive aid is a road sign displaying the distance from a certain destination.
13. Principle of consistency
Old habits from other displays will easily transfer to support processing of new displays if they are designed in a consistent manner. A user’s long-term memory will trigger actions that are expected to be appropriate. A design must accept this fact and utilize consistency among different displays.
The human–computer interface can be described as the point of communication between the human user and the computer. The flow of information between the human and computer is defined as the loop of interaction. The loop of interaction has several aspects to it including:
One of the top academic conferences for new research in human-computer interaction, especially within computer science, is the annually held ACM's Conference on Human Factors in Computing Systems, usually referred to by its short name CHI (pronounced kai, or khai). CHI is organized by ACM SIGCHI Special Interest Group on Computer–Human Interaction. CHI is a large, highly competitive conference, with thousands of attendants, and is quite broad in scope.
There are also dozens of other smaller, regional or specialized HCI-related conferences held around the world each year, the most important of which include (see also [1]):